Robust Object Tracking in Infrared Video via Adaptive Weighted Patches
نویسندگان
چکیده
With the quick development of computer and electronic techniques, infrared sensor-based object tracking has become a hot research topic in recent years. However, infrared object tracking is still a challenging task due to low resolution, lack of representing information, and occlusion. In this work, we present an adaptive weighted patch-based infrared object tracking scheme. First, the candidate local region is divided into non-overlapping sub regions, and a set of belief weights is set on these patches. After this, a particle filtering-based infrared object tracking system is realized. In the last, the belief weight of each patch is evaluated based on the linear discriminative analysis (LDA) and particle sampling scheme. Experimental results on challenging infrared sequences show that the proposed algorithm can effectively locate the tracking object.
منابع مشابه
An Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload
In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...
متن کاملEnhancement of Robust Tracking Performance via Switching Supervisory Adaptive Control
When the process is highly uncertain, even linear minimum phase systems must sacrifice desirable feedback control benefits to avoid an excessive ‘cost of feedback’, while preserving the robust stability. In this paper, the problem of supervisory based switching Quantitative Feedback Theory (QFT) control is proposed for the control of highly uncertain plants. According to this strategy, the unce...
متن کاملRobust Visual Tracking Based on Support Vector Machine and Weighted Sampling Method
Visual tracking algorithm based on binary classification has become the research hot issue. The tracking algorithm firstly constructs a binary classifier between object and background, then to determine the object’s location by the probability of the classifier. However, such binary classification may not fully handle the outliers, which may cause drifting. To improve the robustness of these tr...
متن کاملScale-adaptive Local Patches for Robust Visual Object Tracking
This paper discusses the problem of robustly tracking objects which undergo rapid and dramatic scale changes. To remove the weakness of global appearance models, we present a novel scheme that combines object’s global and local appearance features. The local feature is a set of local patches that geometrically constrain the changes in the target’s appearance. In order to adapt to the object’s g...
متن کاملBag of Features with Dense Sampling for Visual Tracking ?
The bag-of-feature model has become a state-of-the-art method of visual classification. Visual codebooks can be used to capture image statistical information for object detection and classification, which is extracted from local image patches and based on the quantization of robust appearance descriptors. In this paper, more information of target objects can be captured by dense sampling rather...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016